

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-browserid 0.10 documentation

django-browserid

Release v0.10. (Quickstart)

django-browserid is a Python library that integrates BrowserID [https://github.com/mozilla/id-specs/blob/prod/browserid/index.md] authentication
into Django [http://www.djangoproject.com/].

BrowserID is an open, decentralized protocol for authenticating users based on
email addresses. django-browserid provides the necessary hooks to get Django
to authenticate users via BrowserID. By default, django-browserid relies on
Persona [https://persona.org] for the client-side JavaScript shim and for assertion verification.

django-browserid is tested on Python 2.6 to 3.3 and Django 1.4 to 1.6. See
tox.ini [https://github.com/mozilla/django-browserid/blob/master/tox.ini] for more details.

django-browserid depends on:

	Requests [http://docs.python-requests.org/] >= 0.9.1

	fancy_tag [https://github.com/trapeze/fancy_tag] == 0.2.0

	jQuery [http://jquery.com/] >= 1.7 (if you are using api.js and browserid.js).

django-browserid is a work in progress. Contributions are welcome. Feel free
to fork [https://github.com/mozilla/django-browserid] and contribute!

User Guide

	Introduction
	How does it work?

	Persona

	Quickstart
	Installation

	Configuration

	Note for Jinja2 / Jingo Users

	Customization
	Customizing the Verify View

	Customizing the Authentication Backend

	Post-login Response

	Automatic User Creation

	Limiting Authentication

	Custom User Models

	Using the JavaScript API

	Django Admin Support

	Alternative Template Languages

	Settings
	Core Settings

	Redirect URLs

	Customizing the Login Popup

	Customizing the Verify View

	Using a Different Identity Provider

	Deploying in Production

	Upgrading
	0.9 to 0.10

	0.8 to 0.9

	0.7.1 to 0.8

	Troubleshooting
	Logging Errors

	Nothing happens when clicking the login button

	Login fails silently after the Persona popup closes

	Login fails with an error message on a valid account

	Still having issues? Ask for help!

API Documentation

	Python API
	Template Helpers

	Admin Site

	Views

	Signals

	Exceptions

	Verification

	JavaScript API

Contributor Guide

	Contributor Setup

	Contributing Guidelines

	Changelog

	Authors

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Introduction

How does it work?

At a high level, this is what happens when a user wants to log into a site that
uses django-browserid:

	A user clicks a login button on your web page.

	The JavaScript shim (hosted by Persona [https://www.persona.org]) displays a pop-up asking for the
email address the user wants to log in with.

	If necessary, the pop-up prompts the user for additional info to
authenticate them. For example, if the user enters an @mozilla.com email,
the Mozilla LDAP Identity Provider will prompt them for their LDAP password.

	The JavaScript receives an “assertion” from the Identity Provider and
submits it to the site’s backend via AJAX.

	The backend sends the assertion to the Remote verification service [https://developer.mozilla.org/Persona/Remote_Verification_API], which
verifies the assertion and returns the result, including the email address
of the user if verification was successful.

	The backend finds a user account matching that email (creating it if one
isn’t found) and logs the user in as that account.

	The backend returns a URL that the JavaScript redirects the user to.

Note that this is just an example flow. Several of these steps can be
customized for your site; for example, you may not want user accounts to be
created automatically. This behavior can be changed to suit whatever needs you
have.

A detailed explanation of the BrowserID protocol [https://developer.mozilla.org/Persona/Protocol_Overview] is available on MDN.

Persona

By default, django-browserid relies on Persona, which is a set of
BrowserID-related services hosted by Mozilla. It’s possible, but annoying, to
use django-browserid without these dependencies.

Currently, django-browserid relies on Persona for:

	The Cross-browser API Library [https://developer.mozilla.org/Persona/Bootstrapping_Persona#Cross-browser_API_Library], which implements the navigator.id API
for browsers that don’t natively support BrowserID.

	The Fallback Identity Provider [https://developer.mozilla.org/Persona/Bootstrapping_Persona#Fallback_Identity_Provider] for emails from servers that don’t support
BrowserID.

	The Remote verification service [https://developer.mozilla.org/Persona/Remote_Verification_API], which handles assertion verification for
sites that don’t want to verify assertions themselves.

In the future, django-browserid will remove the need to depend on these
Mozilla-centric services. Local verification and a self-hosted cross-browser
API will greatly reduce the reliance on Mozilla’s servers for authentication.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Quickstart

Follow these instructions to get set up with a basic install of
django-browserid:

Installation

You can use pip to install django-browserid and requirements:

$ pip install django-browserid

Configuration

After installation, you’ll need to configure your site to use django-browserid.
Start by making the following changes to your settings.py file:

Add 'django_browserid' to INSTALLED_APPS.
INSTALLED_APPS = (
 # ...
 'django.contrib.auth',
 'django_browserid', # Load after auth
 # ...
)

Add the django_browserid authentication backend.
AUTHENTICATION_BACKENDS = (
 # ...
 'django.contrib.auth.backends.ModelBackend',
 'django_browserid.auth.BrowserIDBackend',
 # ...
)

Next, edit your urls.py file and add the following:

urlpatterns = patterns('',
 # ...
 (r'', include('django_browserid.urls')),
 # ...
)

Note

The django-browserid urlconf must not have a regex with the
include. Use a blank string, as shown above.

Finally, you’ll need to add the login button to your Django templates, along
with the CSS and JS files necessary to make it work:

{% load browserid %}
<html>
 <head>
 <link rel="stylesheet" src="{% static 'browserid/persona-buttons.css' %}">
 </head>
 <body>
 {% if user.is_authenticated %}
 <p>Current user: {{ user.email }}</p>
 {% browserid_logout text='Logout' %}
 {% else %}
 {% browserid_login text='Login' color='dark' %}
 {% endif %}

 <script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="https://login.persona.org/include.js"></script>
 <script src="{% static 'browserid/api.js' %}"></script>
 <script src="{% static 'browserid/browserid.js' %}"></script>
 </body>
</html>

Note

api.js and browserid.js require jQuery [http://jquery.com/] 1.7 or higher.

And that’s it! You can now log into your site using Persona!

Once you’re ready, you should check out how to customize django-browserid to your liking.

Note for Jinja2 / Jingo Users

If you’re using Jinja2 [http://jinja.pocoo.org/] via jingo [https://github.com/jbalogh/jingo], here’s a version of the example above
written in Jinja2:

<html>
 <head>
 {{ browserid_css() }}
 </head>
 <body>
 {% if user.is_authenticated() %}
 <p>Current user: {{ user.email }}</p>
 {{ browserid_logout(text='Logout') }}
 {% else %}
 {{ browserid_login(text='Login', color='dark') }}
 {% endif %}

 <script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
 {{ browserid_js() }}
 </body>
</html>

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Customization

Now that you’ve got django-browserid installed and configured, it’s time to see
how to customize it to your needs.

Customizing the Verify View

Many common customizations involve overriding methods on the
Verify class. But how do you use a
custom Verify subclass?

You can substitute a custom verification view by setting
BROWSERID_VERIFY_VIEW to
the import path for your view:

BROWSERID_VERIFY_VIEW = 'project.application.views.MyCustomVerifyView'

Customizing the Authentication Backend

Another common way to customize django-browserid is to subclass
BrowserIDBackend. To use a
custom BrowserIDBackend class, simply use the python path to your custom
class in the AUTHENTICATION_BACKENDS setting instead of the path to
BrowserIDBackend.

Post-login Response

After logging the user in, the default view redirects the user to
LOGIN_REDIRECT_URL or
LOGIN_REDIRECT_URL_FAILURE,
depending on if login succeeded or failed. You can modify those settings to
change where they are redirected to.

Note

You can use django.core.urlresolvers.reverse_lazy to generate a
URL for these settings from a URL pattern name or function name.

You can also override the
success_url <django_browserid.views.Verify.success_url and
failure_url <django_browserid.views.Verify.failure_url properties on
the Verify view if you need more control over how the redirect URLs are
retrieved.

If you need to control the entire response to the Verify view, such as when
you’re using custom JavaScript, you’ll want to override
login_success <django_browserid.views.Verify.login_success
and login_failure <django_browserid.views.Verify.login_failure.

Automatic User Creation

If a user signs in with an email that doesn’t match an existing user,
django-browserid automatically creates a new User object for them that is tied
to their email address. You can disable this behavior by setting
BROWSERID_CREATE_USER to
False, which will cause authentication to fail if a user signs in with an
unrecognized email address.

If you want to customize how new users are created (perhaps you want to
generate a display name for them), you can override the
create_user method
on BrowserIDBackend:

from django_browserid.auth import BrowserIDBackend

class CustomBackend(BrowserIDBackend):
 def create_user(self, email):
 username = my_custom_username_algo()
 return self.User.objects.create_user(username, email)

Note

self.User points to the User model defined in
AUTH_USER_MODEL for custom User model support. See Custom User Models
for more details.

Limiting Authentication

There are two ways to limit who can authenticate with your site: prohibiting
certain email addresses, or filtering the queryset that emails are compared to.

filter_users_by_email

filter_users_by_email <django_browserid.auth.BrowserIDBackend.filter_users_by_email
returns the queryset that is searched when looking for a user account that
matches a user’s email. Overriding this allows you to limit the set of users
that are searched:

from django_browserid.auth import BrowserIDBackend

class CustomBackend(BrowserIDBackend):
 def filter_users_by_email(self, email):
 # Only allow staff users to login.
 return self.User.objects.filter(email=email, is_staff=True)

Note

If you customize filter_users_by_email, you should probably make
sure that Automatic User Creation is either disabled or customized to
only create users that match your limited set.

is_valid_email

is_valid_email <django_browserid.auth.BrowserIDBackend.is_valid_email
determines if the email a user attempts to log in with is considered valid.
Override this to exclude users with certain emails:

from django_browserid.auth import BrowserIDBackend

	class CustomBackend(BrowserIDBackend):

	
	def is_valid_email(self, email):

	# Ignore users from fakeemails.com
return not email.endswith('@fakeemails.com‘)

Custom User Models

Django allows you to use a custom User model for authentication
<custom_user_model>. If you are using a custom User model, and the model has
an email attribute that can store email addresses, django-browserid should
work out-of-the-box for you.

If this isn’t the case, then you will probably have to override the
is_valid_email <django_browserid.auth.BrowserIDBackend.is_valid_email,
filter_users_by_email <django_browserid.auth.BrowserIDBackend.filter_users_by_email,
and create_user
methods to work with your custom User class.

Using the JavaScript API

django-browserid comes with two JavaScript files to include in your webpage:

	api.js: An API for triggering logins via BrowserID and verifying
assertions via the server.

	browserid.js: A basic example of hooking up links with the JavaScript
API.

browserid.js only covers basic use cases. If your site has more complex
behavior behind trigger login, you should replace browserid.js in your
templates with your own JavaScript file that uses the django-browserid
JavaScript API.

See also

	JavaScript API

	API Documentation for api.js.

Django Admin Support

If you want to use BrowserID for login on the built-in Django admin interface,
you must use the
django-browserid admin site instead of
the default Django admin site:

from django.contrib import admin

from django_browserid.admin import site as browserid_admin

from myapp.foo.models import Bar

class BarAdmin(admin.ModelAdmin):
 pass
browserid_admin.register(Bar, BarAdmin)

You must also use the django-browserid admin site in your urls.py file:

from django.conf.urls import patterns, include, url

Autodiscover admin.py files in your project.
from django.contrib import admin
admin.autodiscover()

copy_registry copies ModelAdmins registered with the default site, like
the built-in Django User model.
from django_browserid.admin import site as browserid_admin
browserid_admin.copy_registry(admin.site)

urlpatterns = patterns('',
 # ...
 url(r'^admin/', include(browserid_admin.urls)),
)

See also

	django_browserid.admin.BrowserIDAdminSite

	API documentation for BrowserIDAdminSite, including how to customize the
login page (such as including a normal login alongside BrowserID login).

Alternative Template Languages

By default, django-browserid supports use in Django templates as well as use in
Jinja2 [http://jinja.pocoo.org/] templates via the jingo [https://github.com/jbalogh/jingo] library. Template helpers are registered as
helper functions with jingo, so you can use them directly in Jinja2 templates:

<div class="authentication">
 {% if user.is_authenticated() %}
 {{ browserid_logout(text='Logout') }}
 {% else %}
 {{ browserid_login(text='Login', color='dark') }}
 {% endif %}
</div>
{{ browserid_js() }}

For other libraries or template languages, you will have to register the
django-browserid helpers manually. The relevant helper functions can be found
in the django_browserid.helpers module.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Settings

This document describes the Django settings that can be used to customize the
behavior of django-browserid.

Core Settings

	
django.conf.settings.BROWSERID_AUDIENCES

	

	Default:	No default

List of audiences that your site accepts. An audience is the protocol,
domain name, and (optionally) port that users access your site from. This
list is used to determine the audience a user is part of (how they are
accessing your site), which is used during verification to ensure that the
assertion given to you by the user was intended for your site.

Without this, other sites that the user has authenticated with via Persona
could use their assertions to impersonate the user on your site.

Note that this does not have to be a publicly accessible URL, so local URLs
like http://localhost:8000 or http://127.0.0.1 are acceptable as
long as they match what you are using to access your site.

Redirect URLs

Note

If you want to use named URLs instead of directly including URLs into
your settings file, you can use reverse_lazy [https://docs.djangoproject.com/en/dev/ref/urlresolvers/#reverse-lazy] to do so.

	
django.conf.settings.LOGIN_REDIRECT_URL

	

	Default:	'/accounts/profile'

Path to redirect to on successful login. If you don’t specify this, the
default Django value will be used.

	
django.conf.settings.LOGIN_REDIRECT_URL_FAILURE

	

	Default:	'/'

Path to redirect to on an unsuccessful login attempt.

	
django.conf.settings.LOGOUT_REDIRECT_URL

	

	Default:	'/'

Path to redirect to on logout.

Customizing the Login Popup

	
django.conf.settings.BROWSERID_REQUEST_ARGS

	

	Default:	{}

Controls the arguments passed to navigator.id.request, which are used to
customize the login popup box. To see a list of valid keys and what they do,
check out the navigator.id.request documentation [https://developer.mozilla.org/en-US/docs/DOM/navigator.id.request].

Customizing the Verify View

	
django.conf.settings.BROWSERID_VERIFY_VIEW

	

	Default:	django_browserid.views.Verify

Allows you to substitute a custom class-based view for verifying assertions.
For example, the string ‘myapp.users.views.Verify’ would import Verify
from myapp.users.views and use it in place of the default view.

When using a custom view, it is generally a good idea to subclass the
default Verify and override the methods you want to change.

	
django.conf.settings.BROWSERID_CREATE_USER

	

	Default:	True

If True or False, enables or disables automatic user creation during
authentication. If set to a string, it is treated as an import path
pointing to a custom user creation function.

	
django.conf.settings.BROWSERID_DISABLE_SANITY_CHECKS

	

	Default:	False

Controls whether the Verify view performs some helpful checks for common
mistakes. Useful if you’re getting warnings for things you know aren’t
errors.

Using a Different Identity Provider

	
django.conf.settings.BROWSERID_SHIM

	

	Default:	‘https://login.persona.org/include.js‘

The URL to use for the BrowserID JavaScript shim.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Deploying in Production

Deploying django-browserid in a production environment requires a few extra
changes from the setup described in the Quickstart:

	The BROWSERID_AUDIENCES
setting is required when DEBUG is set to False. Ensure that all the
domains that users will access your site from are listed in this setting.

	Optional: It is a good idea to minify the static JS and CSS files you’re
using. django-compressor [http://django-compressor.readthedocs.org/en/latest/] and jingo-minify [https://github.com/jsocol/jingo-minify] are examples of libraries
you can use for minification.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Upgrading

If you’re looking to upgrade from an older version of django-browserid, you’re
in the right place. This document describes the major changes required to get
your site up to the latest and greatest!

0.9 to 0.10

	The minimum supported version of requests is now 1.0.0, and six has been
removed from the requirements.

	Replace the SITE_URL setting with BROWSERID_AUDIENCES, which is
essentially the same setting, but must be a list of strings (wrapping your
old SITE_URL value with square brackets to make it a list is fine):

BROWSERID_AUDIENCES = ['https://www.example.com']

	On local development installs, you can remove SITE_URL entirely, as
BROWSERID_AUDIENCES isn’t required when DEBUG is True.

	In your root urlconf, remove any regex in front of the include for
django-browserid urls. Because the new JavaScript relies on views being
available at certain URLs, you must not change the path that the
django-browserid views are served:

urlpatterns = patterns('',
 # ...
 (r'', include('django_browserid.urls')),
 # ...
)

	Remove the browserid_info helper from your templates; it is no longer
necessary.

	browserid.js has been split into api.js, which contains just the
JavaScript API, and browserid.js, which contains the sample code for
hooking up login buttons. If you aren’t using the browserid_js helper to
include the JavaScript on the page, you probably need to update your project
to either include both or just api.js.

0.8 to 0.9

	Six v1.3 or higher is now required.

0.7.1 to 0.8

	fancy_tag 0.2.0 has been added to the required libraries.

	Rename the browserid_form context processor to browserid in the
TEMPLATE_CONTEXT_PROCESSORS setting:

TEMPLATE_CONTEXT_PROCESSORS = (
 # ...
 'django_browserid.context_processors.browserid',
 # ...
)

	Replace custom login button code with the new template helpers,
browserid_info, browserid_login, and browserid_logout.

	browserid_info should be added just below <body> on any page that
includes a login button.

	browserid_login and browserid_logout output login and logout links
respectively.

	It’s now recommended to include the JavaScript for the login buttons using
the browserid_js helper, which outputs the appropriate <script> tags.

	The included JavaScript requires jQuery 1.7 or higher instead of jQuery 1.6.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Troubleshooting

If you are having trouble getting django-browserid to work properly, try
reading through the sections below for help on dealing with common issues.

Logging Errors

Before you do anything else, check to see if django-browserid is logging issues
by setting up a logger for django_browserid in your logging config. Here’s
a sample config that will log messages from django-browserid to the console:

LOGGING = {
 'version': 1,
 'handlers': {
 'console':{
 'level': 'DEBUG',
 'class': 'logging.StreamHandler'
 },
 },
 'loggers': {
 'django_browserid': {
 'handlers': ['console'],
 'level': 'DEBUG',
 }
 },
}

Nothing happens when clicking the login button

If nothing happens when you click the login button on your website, check that
you’ve included api.js and browserid.js on your webpage:

<script src="{% static 'browserid/api.js' %}"></script>
<script src="{% static 'browserid/browserid.js' %}"></script>

CSP WARN: Directive ”...” violated by https://browserid.org/include.js

You may see this warning in your browser’s error console when your site uses
Content Security Policy [https://developer.mozilla.org/en/Security/CSP] without making an exception for the persona.org
external JavaScript include.

To fix this, include https://login.persona.org in your script-src and frame-src
directive. If you’re using the django-csp [https://github.com/mozilla/django-csp] library, the following settings
will work:

CSP_SCRIPT_SRC = ("'self'", 'https://login.persona.org')
CSP_FRAME_SRC = ("'self'", 'https://login.persona.org')

Login fails silently after the Persona popup closes

There are a few reasons why login may fail without an error message after the
Persona popup closes:

SESSION_COOKIE_SECURE is False

SESSION_COOKIE_SECURE controls if the secure flag is set on the session
cookie. If set to True for site running in an environment that doesn’t use
HTTPS, the session cookie won’t be sent by your browser because you’re using an
HTTP connection.

The solution is to set SESSION_COOKIE_SECURE to False on your local instance
in your settings file:

SESSION_COOKIE_SECURE = False

No cache configured

Several projects (especially projects based on playdoh [https://github.com/mozilla/playdoh], which uses
django-session-csrf [https://github.com/mozilla/django-session-csrf]) store session info in the cache rather than the
database, and if your local instance has no cache configured, the session
information will not be stored and login will fail silently.

To solve this issue, you should configure your local instance to use an
in-memory cache with the following in your local settings file:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
 'LOCATION': 'unique-snowflake'
 }
}

Login fails with an error message on a valid account

If you see a login error page after attempting to login, but you know that
your Persona account is valid and should be able to login, check for these
issues:

Your website uses HTTPS but django-browserid thinks it’s using HTTP

If you are using django-browserid behind a load balancer that uses HTTP
internally for your SSL connections, you may experience failed logins. The
request.is_secure() method determines if a request is using HTTPS by
checking for the header specified by the SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header] setting. If
this is unset or the header is missing, Django assumes the request uses HTTP.

Because the audiences stored in
BROWSERID_AUDIENCES include
the protocol used to access the site, you may get an error when
django-browserid checks the audiences against the URL from the request due to
the request thinking it’s not using SSL when it is.

Make sure that SECURE_PROXY_SSL_HEADER is set to an appropriate value for
your load balancer. An example configuration using nginx [http://wiki.nginx.org/] might look like this:

settings.py
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTOCOL', 'https')

nginx config
location / {
 proxy_pass http://127.0.0.1:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Protocol https; # Tell django we're using https
}

Still having issues? Ask for help!

If your issue isn’t listed above and you’re having trouble tracking it down,
you can try asking for help from:

	The #webdev channel on irc.mozilla.org [http://irc.mozilla.org],

	The dev-webdev@lists.mozilla.org [https://lists.mozilla.org/listinfo/dev-webdev] mailing list,

	or by emailing the maintainers directly.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Python API

This part of the documentation describes the interfaces for using
django-browserid.

Template Helpers

Template helpers are the functions used in your templates that output HTML for
login and logout buttons, as well as the CSS and JS tags for making the buttons
function and display correctly.

	
django_browserid.helpers.browserid_login(text='Sign in', color=None, next=None, link_class='browserid-login persona-button', attrs=None, fallback_href='#')

	Output the HTML for a BrowserID login link.

	Parameters:	
	text – Text to use inside the link. Defaults to ‘Sign in’, which is not
localized.

	color – Color to use for the login button; this will only work if you have
included the default CSS provided by
django_browserid.helpers.browserid_css().

Supported colors are: ‘dark’, ‘blue’, and ‘orange’.

	next – URL to redirect users to after they login from this link. If omitted,
the LOGIN_REDIRECT_URL setting will be used.

	link_class – CSS class for the link. Defaults to browserid-login persona-button.

	attrs – Dictionary of attributes to add to the link. Values here override those
set by other arguments.

If given a string, it is parsed as JSON and is expected to be an object.

	fallback_href – Value to use for the href of the link. If the user has disabled
JavaScript, the login link will bring them to this page, which can be
used as a non-JavaScript login fallback.

	
django_browserid.helpers.browserid_logout(text='Sign out', next=None, link_class='browserid-logout', attrs=None)

	Output the HTML for a BrowserID logout link.

	Parameters:	
	text – Text to use inside the link. Defaults to ‘Sign out’, which is not
localized.

	link_class – CSS class for the link. Defaults to browserid-logout.

	attrs – Dictionary of attributes to add to the link. Values here override those
set by other arguments.

If given a string, it is parsed as JSON and is expected to be an object.

	
django_browserid.helpers.browserid_js(include_shim=True)

	Return <script> tags for the JavaScript required by the BrowserID login
button. Requires use of the staticfiles app.

	Parameters:	include_shim – A boolean that determines if the persona.org JavaScript shim is included
in the output. Useful if you want to minify the button JavaScript using
a library like django-compressor that can’t handle external JavaScript.

	
django_browserid.helpers.browserid_css()

	Return <link> tag for the optional CSS included with django-browserid.
Requires use of the staticfiles app.

Admin Site

Admin site integration allows you to support login via django-browserid on the
Django built-in admin interface.

	
class django_browserid.admin.BrowserIDAdminSite(name='admin', app_name='admin')

	Support logging in to the admin interface via BrowserID.

	
include_password_form = False

	If True, include the normal username and password form as well as
the BrowserID button.

	
copy_registry(site)

	Copy the ModelAdmins that have been registered on another site
so that they are available on this site as well.

Useful when used with django.contrib.admin.autocomplete(),
allowing you to copy the ModelAdmin entries registered with the
default site, such as the User ModelAdmin. For example, in
urls.py:

from django.contrib import admin
admin.autodiscover()

from django_browserid.admin import site as browserid_admin
browserid_admin.copy_registry(admin.site)

To include: url(r'^admin/', include(browserid_admin.urls))

	Parameters:	site – Site to copy registry entries from.

	
django_browserid.admin.site

	Global object for the common case. You can import this in
admin.py and urls.py instead of
django.contrib.admin.site.

Views

django-browserid works primarily through AJAX requests to the views below in
order to log users in and out and to send information required for the login
process, such as a CSRF token or customization options for the Persona popup.

	
class django_browserid.views.Verify(**kwargs)

	Bases: django_browserid.views.JSONView

Send an assertion to the remote verification service, and log the
user in upon success.

	
failure_url

	URL to redirect users to when login fails. This uses the value
of settings.LOGIN_REDIRECT_URL_FAILURE, and defaults to
'/' if the setting doesn’t exist.

	
success_url

	URL to redirect users to when login succeeds. This uses the
value of settings.LOGIN_REDIRECT_URL, and defaults to
'/' if the setting doesn’t exist.

	
login_success()

	Log the user into the site.

	
login_failure(error=None)

	Redirect the user to a login-failed page.

	Parameters:	error – If login failed due to an error raised during verification,
this will be the BrowserIDException instance that was
raised.

	
post(*args, **kwargs)

	Send the given assertion to the remote verification service and,
depending on the result, trigger login success or failure.

	
dispatch(request, *args, **kwargs)

	Run some sanity checks on the request prior to dispatching it.

	
class django_browserid.views.Logout(**kwargs)

	Bases: django_browserid.views.JSONView

	
redirect_url

	URL to redirect users to post-login. Uses
settings.LOGOUT_REDIRECT_URL and defaults to / if the
setting isn’t found.

	
post(request)

	Log the user out.

	
class django_browserid.views.Info(**kwargs)

	Bases: django_browserid.views.JSONView

Fetch backend-defined data used by the frontend JavaScript.

Signals

	
django_browserid.signals.user_created

	Signal triggered when a user is automatically created during authentication.

	Parameters:	
	sender – The function that created the user instance.

	user – The user instance that was created.

Exceptions

	
exception django_browserid.base.BrowserIDException(exc)

	Raised when there is an issue verifying an assertion.

	
exc = None

	Original exception that caused this to be raised.

Verification

The verification classes allow you to verify if a user-provided assertion is
valid according to the Identity Provider specified by the user’s email address.
Generally you don’t have to use these directly, but they are available for
sites with complex authentication needs.

	
class django_browserid.RemoteVerifier

	Verifies BrowserID assertions using a remote verification service.

By default, this uses the Mozilla Persona service for remote verification.

	
verify(assertion, audience, **kwargs)

	Verify an assertion using a remote verification service.

	Parameters:	
	assertion – BrowserID assertion to verify.

	audience – The protocol, hostname and port of your website. Used to confirm that the assertion was
meant for your site and not for another site.

	kwargs – Extra keyword arguments are passed on to requests.post to allow customization.

	Returns:	VerificationResult

	Raises:	BrowserIDException: Error connecting to the remote verification service, or
error parsing the response received from the service.

	
class django_browserid.MockVerifier(email, **kwargs)

	Mock-verifies BrowserID assertions.

	
__init__(email, **kwargs)

	

	Parameters:	
	email – Email address to include in successful verification result. If None, verify will return
a failure result.

	kwargs – Extra keyword arguments are used to update successful verification results. This allows
for mocking attributes on the result, such as the issuer.

	
verify(assertion, audience, **kwargs)

	Mock-verify an assertion. The return value is determined by the parameters given to the
constructor.

	
class django_browserid.VerificationResult(response)

	Result of an attempt to verify an assertion.

VerificationResult objects can be treated as booleans to test if the verification succeeded or
not.

The fields returned by the remote verification service, such as email or issuer, are
available as attributes if they were included in the response. For example, a failure result
will raise an AttributeError if you try to access the email attribute.

	
expires

	The expiration date of the assertion as a naive datetime.datetime in UTC.

	
django_browserid.get_audience(request)

	Determine the audience to use for verification from the given request.

Relies on the BROWSERID_AUDIENCES setting, which is an explicit list of acceptable
audiences for your site.

	Returns:	The first audience in BROWSERID_AUDIENCES that has the same origin as the request’s
URL.

	Raises:	django.core.exceptions.ImproperlyConfigured: If BROWSERID_AUDIENCES isn’t
defined, or if no matching audience could be found.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

JavaScript API

This part of the documentation describes the JavaScript API defined in
api.js that can be used to interact with Persona or the
django-browserid views on your server.

	
django_browserid

	Global object containing the JavaScript API for interacting with
django-browserid.

Most functions return jQuery Deferreds [https://api.jquery.com/jQuery.Deferred/] for registering asynchronous
callbacks.

	
login([requestArgs])

	Retrieve an assertion and use it to log the user into your site.

	Arguments:	
	requestArgs (object) – Options to pass to navigator.id.request [https://developer.mozilla.org/en-US/docs/DOM/navigator.id.request].

	Returns:	Deferred that resolves once the user has been logged in.

	
logout()

	Log the user out of your site.

	Returns:	Deferred that resolves once the user has been logged out.

	
getAssertion([requestArgs])

	Retrieve an assertion via BrowserID.

	Returns:	Deferred that resolves with the assertion once it is retrieved.

	
verifyAssertion(assertion)

	Verify that the given assertion is valid, and log the user in.

	Arguments:	
	assertion (string) – Assertion to verify.

	Returns:	Deferred that resolves with the login view response once login
is complete.

	
getInfo()

	Fetch information from the
Info view, such as a CSRF token or
the parameters for the Persona popup.

	Returns:	Deferred that resolves with the results of the AJAX request.

	
didLoginFail([location])

	Check for the query string parameter used to signal a failed login.

	Arguments:	
	location (string) – Location object containing the URL to check.
Defaults to window.location.

	Returns:	True if the parameter was found and login failed, false
otherwise.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Contributor Setup

So you want to contribute to django-browserid? Great! We really appreciate any
help you can give!

The documentation below should help you set up a development environment and
run the tests to ensure that your changes work properly.

Get the code

You can check out the code from the github repository [https://github.com/mozilla/django-browserid]:

git clone git://github.com/mozilla/django-browserid.git
cd django-browserid

It is a good idea to create a virtualenv [http://www.virtualenv.org/] (the example here uses
virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/]) for isolating your development environment. To create a
virtualenv and install all development packages:

mkvirtualenv django-browserid
pip install -r requirements.txt

Running tests

To check if your changes break any existing functionality, you can run the
test suite:

./setup.py test

Before submitting a pull request, you should run the test suite in all the
Django/Python combinations that we support. We support running the tests in all
these combinations via tox [http://tox.readthedocs.org/en/latest/]:

pip install tox
tox

Documenation

If you make changes to the documentation, you can build it locally with this
command:

make -C docs/ html

The generated files can be found in docs/_build/html.

JavaScript Tests

To run the JavaScript tests, you must have node.js [https://nodejs.org/] installed. Then, use the
npm command to install the test dependencies:

npm install

After that, you can run the JavaScript tests with the following command from
the repo root:

npm test

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Contributing Guidelines

In order to make our review/development process easier, we have some guidelines
to help you figure out how to contribute to django-browserid.

Reporting Issues

We use Github Issues [https://github.com/mozilla/django-browserid/issues] to track issues and bugs for django-browserid.

Development Guidelines

	Python code should be covered by unit tests. JavaScript code for the
JavaScript API should be covered by unit tests. We don’t yet have tests for
non-API JavaScript code, so manual testing is recommended currently.

	Python code should follow Mozilla’s general Webdev guidelines [http://mozweb.readthedocs.org/en/latest/coding.html#python]. The same
goes for our JavaScript guidelines [http://mozweb.readthedocs.org/en/latest/js-style.html#js-style] and CSS guidelines [http://mozweb.readthedocs.org/en/latest/css-style.html].
	As allowed by PEP8, we use 99-characters-per-line for Python code and
72-characters-per-line for documentation/comments. Feel free to break these
guidelines for readability if necessary.

Submitting a Pull Request

When submitting a pull request, make sure to do the following:

	Check that the Python and JavaScript tests pass in all environments. Running
the Python tests in all environments is easy using tox [http://tox.readthedocs.org/en/latest/]:

$ pip install tox
$ tox

Running the JavaScript tests requires node.js [https://nodejs.org/]. To install the test
dependencies and run the test suite:

$ npm install
$ npm test

	Make sure to include new tests or update existing tests to cover your
changes.

	If you haven’t, add your name, username, or alias to the AUTHORS.rst file
as a contributor.

Additional Resources

	IRC: #webdev on irc.mozilla.org [http://irc.mozilla.org].

	Mailing list: dev-webdev@lists.mozilla.org [https://lists.mozilla.org/listinfo/dev-webdev].

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-browserid 0.10 documentation

Changelog

History

0.10 (2014-04-15)

	Massive documentation update, including upgrade instructions for older
versions.

	Support and test on Python 3.2 and 3.3, and Django 1.6!

	Disable automatic login and logout coming from Persona. This also fixes
logins being triggered in all open tabs on your site.

	Replace in-page form for trigger logins with AJAX calls. Removes need for
{% browserid_info %} template tag.

	Drop six from requirements.

	Replace SITE_URL setting with BROWSERID_AUDIENCES and make it
optional when DEBUG is True.

	Add support for logging-in to the admin interface with Persona.

	Remove need to set custom context processor.

	Replace verify function with the Verifier classes like
RemoteVerifier.

	And more!

0.9 (2013-08-25)

	Add BROWSERID_VERIFY_CLASS to make it easier to customize the verification view.

	Add hook to authentication backend for validating the user’s email.

	Ensure backend attribute exists on user objects authenticated by django-browserid.

	Prevent installation of the library as an unpackaged egg.

	Add incomplete Python 3 support.

	Fix an issue where users who logged in without Persona were being submitted to
navigator.id.watch anyway.

	Add CSS to make the login/logout buttons prettier.

	Support for SITE_URL being an iterable.

	Add support for lazily-evaluated BROWSERID_REQUEST_ARGS.

	Add a small JavaScript API available on pages that include browserid.js.

	Support running tests via python setup.py test.

	Fix an infinite loop where logging in with a valid Persona account while
BROWSERID_CREATE_USER is true would cause an infinite redirection.

0.8 (2013-03-05)

	#97: Add BrowserIDException that is raised by verify when there are issues
connecting to the remote verification service. Update the Verify view to handle
these errors.

	#125: Prevent the Verify view from running reverse on user input and add check
to not redirect to URLs with a different host.

	Remove ability to set a custom name for the Verify redirect parameter: it’s
just next.

	Replace browserid_button with browserid_login and
browserid_logout, and make browserid_info a function.

	#109: Fix issue with unicode strings in the extra_params kwarg for
verify.

	#110: Fix bug where kwargs to authenticate get passed as extra_params
to verify. Instead, you can pass any extra parameters in browserid_extra.
But please don’t, it’s undocumented for a reason. <3

	#105: General documentation fixes, add more debug logging for common issues.
Add BROWSERID_DISABLE_SANITY_CHECKS setting and remove the need to set
SITE_URL in development.

	Add form_extras parameter to browserid_button.

	#101, #102: Update the default JavaScript to pass the current user’s email
address into navigator.id.watch to avoid unnecessary auto-login attempts.

	Add template functions/tags to use for embedding login/logout buttons instead
of using your own custom HTML.

	Add a url kwarg to verify that lets you specify a custom verification
service to use.

	Add documentation for setting up the library for development.

	#103: BrowserIDForm now fails validation if the assertion given is
non-ASCII.

	Fix an error in the sample urlconf in the documentation.

	#98: Fix a bug where login or logout buttons might not be detected by the
default JavaScript correctly if <a> element contained extra HTML.

	Add pass_mock kwarg to mock_browserid, which adds a new argument to
the front of the decorated method that is filled with the Mock object used
in place of _verify_http_request.

	Any extra kwargs to BrowserIDBackend.authenticate are passed in the verify
request as POST arguments (this will soon be removed, don’t rely on it).

0.7.1 (2012-11-08)

	Add support for a working logout button. Switching to the Observer API in 0.7
made the issue that we weren’t calling navigator.id.logout more
pronounced, so it makes sense to make a small new release to make it easier
to add a logout button.

0.7 (2012-11-07)

	Actually start updating the Changelog again.

	Remove deprecated functions django_browserid.auth.get_audience and
django_browserid.auth.BrowserIDBackend.verify, as well as support for
DOMAIN and PROTOCOL settings.

	Add small fix for infinite login loops.

	Add automated testing for Django 1.3.4, 1.4.2, and 1.5a1.

	Switch to using format for all string formatting (breaks Python 2.5
compatibility).

	Add support for Django 1.5 Custom User Models.

	Fix request timeouts so that they work properly.

	Add ability to customize BrowserID login popup via arguments to
navigator.id.request.

	Update JavaScript to use the new Observer API.

	Change browserid.org urls to login.persona.org.

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-browserid 0.10 documentation

Authors

django-browserid is written and maintained by various contributors:

Current Maintainers

	Michael Kelly <mkelly@mozilla.com>

	Will Kahn-Greene <willkg@mozilla.com>

	Peter Bengtsson <peterbe@mozilla.com>

Previous Maintainers

	Paul Osman

	Austin King

	Ben Adida

Patches and Suggestions

	Thomas Grainger

	Owen Coutts

	Francois Marier

	Andy McKay

	Giorgos Logiotatidis

	Alexis Metaireau

	Rob Hudson

	Ross Bruniges

	Les Orchard

	Charlie DeTar

	Luke Crouch

	shaib

	Kumar McMillan

	Carl Meyer

	ptgolden

	Will Kahn-Greene

	Allen Short

	meehow

	Greg Koberger

	Niran Babalola

	callmekatootie

	Paul Mclanahan

	JR Conlin

	Prasoon Shukla

	Peter Bengtsson

	Javed Khan

	Kalail (Kashif Malik)

	Richard Mansfield

	Francesco Pischedda

	Edward Abraham

	Eric Holscher

	mvasilkov

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-browserid 0.10 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_browserid	

 	
 	
 django_browserid.admin	

 	
 	
 django_browserid.helpers	

 	
 	
 django_browserid.signals	

 	
 	
 django_browserid.views	

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-browserid 0.10 documentation

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | U
 | V

_

 	

 	__init__() (django_browserid.MockVerifier method)

B

 	

 	BROWSERID_AUDIENCES (in module django.conf.settings)

 	BROWSERID_CREATE_USER (in module django.conf.settings)

 	browserid_css() (in module django_browserid.helpers)

 	BROWSERID_DISABLE_SANITY_CHECKS (in module django.conf.settings)

 	browserid_js() (in module django_browserid.helpers)

 	browserid_login() (in module django_browserid.helpers)

 	

 	browserid_logout() (in module django_browserid.helpers)

 	BROWSERID_REQUEST_ARGS (in module django.conf.settings)

 	BROWSERID_SHIM (in module django.conf.settings)

 	BROWSERID_VERIFY_VIEW (in module django.conf.settings)

 	BrowserIDAdminSite (class in django_browserid.admin)

 	BrowserIDException

C

 	

 	copy_registry() (django_browserid.admin.BrowserIDAdminSite method)

D

 	

 	didLoginFail() (built-in function)

 	dispatch() (django_browserid.views.Verify method)

 	django_browserid (global variable or constant)

 	

 	(module)

 	django_browserid.admin (module)

 	

 	django_browserid.helpers (module)

 	django_browserid.signals (module)

 	django_browserid.views (module)

E

 	

 	exc (django_browserid.base.BrowserIDException attribute)

 	

 	expires (django_browserid.VerificationResult attribute)

F

 	

 	failure_url (django_browserid.views.Verify attribute)

G

 	

 	get_audience() (in module django_browserid)

 	getAssertion() (built-in function)

 	

 	getInfo() (built-in function)

I

 	

 	include_password_form (django_browserid.admin.BrowserIDAdminSite attribute)

 	

 	Info (class in django_browserid.views)

L

 	

 	login() (built-in function)

 	login_failure() (django_browserid.views.Verify method)

 	LOGIN_REDIRECT_URL (in module django.conf.settings)

 	LOGIN_REDIRECT_URL_FAILURE (in module django.conf.settings)

 	

 	login_success() (django_browserid.views.Verify method)

 	Logout (class in django_browserid.views)

 	logout() (built-in function)

 	LOGOUT_REDIRECT_URL (in module django.conf.settings)

M

 	

 	MockVerifier (class in django_browserid)

P

 	

 	post() (django_browserid.views.Logout method)

 	

 	(django_browserid.views.Verify method)

R

 	

 	redirect_url (django_browserid.views.Logout attribute)

 	

 	RemoteVerifier (class in django_browserid)

S

 	

 	site (in module django_browserid.admin)

 	

 	success_url (django_browserid.views.Verify attribute)

U

 	

 	user_created (in module django_browserid.signals)

V

 	

 	VerificationResult (class in django_browserid)

 	Verify (class in django_browserid.views)

 	

 	verify() (django_browserid.MockVerifier method)

 	

 	(django_browserid.RemoteVerifier method)

 	verifyAssertion() (built-in function)

 Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/down.png

_static/file.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-browserid 0.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Mozilla Foundation.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

