
django-browserid Documentation
Release 2.0.2

Mozilla Foundation

June 22, 2016

Contents

1 django-browserid 3
1.1 User Guide . 3
1.2 API Documentation . 16
1.3 Contributor Guide . 22

Python Module Index 31

i

ii

django-browserid Documentation, Release 2.0.2

Mozilla has announced that Persona will be shutting down November 2016. django-browserid relies on the Persona
service and will stop functioning properly once Persona is shut down. While it is possible to self-host Persona and
configure django-browserid to rely on your own instance, this is difficult and not recommended. See the wiki page
linked above for recommended alternatives to Persona for authentication.

Contents 1

https://wiki.mozilla.org/Identity/Persona_Shutdown_Guidelines_for_Reliers
http://django-browserid.readthedocs.org/en/latest/user/intro.html#persona-dependence
http://django-browserid.readthedocs.org/en/latest/user/intro.html#persona-dependence

django-browserid Documentation, Release 2.0.2

2 Contents

CHAPTER 1

django-browserid

Release v2.0.2. (Quickstart)

django-browserid is a Python library that integrates BrowserID authentication into Django.

BrowserID is an open, decentralized protocol for authenticating users based on email addresses. django-browserid
provides the necessary hooks to get Django to authenticate users via BrowserID. By default, django-browserid relies
on Persona for the client-side JavaScript shim and for assertion verification.

django-browserid is tested on Python 2.7 and 3.4 onward, and supports Django 1.8 and up. See tox.ini for more details.

django-browserid depends on:

• Requests >= 1.0.0

• jQuery >= 1.8 (if you are using api.js and browserid.js).

django-browserid is a work in progress. Contributions are welcome. Feel free to fork and contribute!

1.1 User Guide

1.1.1 Introduction

How does it work?

At a high level, this is what happens when a user wants to log into a site that uses django-browserid:

1. A user clicks a login button on your web page.

2. The JavaScript shim (hosted by Persona) displays a pop-up asking for the email address the user wants to log in
with.

3. If necessary, the pop-up prompts the user for additional info to authenticate them. For example, if the user enters
an @mozilla.com email, the Mozilla LDAP Identity Provider will prompt them for their LDAP password.

4. The JavaScript receives an “assertion” from the Identity Provider and submits it to the site’s backend via AJAX.

5. The backend sends the assertion to the Remote verification service, which verifies the assertion and returns the
result, including the email address of the user if verification was successful.

6. The backend finds a user account matching that email (creating it if one isn’t found) and logs the user in as that
account.

7. The backend returns a URL that the JavaScript redirects the user to.

3

https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://www.djangoproject.com/
https://persona.org
https://github.com/mozilla/django-browserid/blob/master/tox.ini
http://docs.python-requests.org/
http://jquery.com/
https://github.com/mozilla/django-browserid
https://www.persona.org
https://developer.mozilla.org/Persona/Remote_Verification_API

django-browserid Documentation, Release 2.0.2

Note that this is just an example flow. Several of these steps can be customized for your site; for example, you may
not want user accounts to be created automatically. This behavior can be changed to suit whatever needs you have.

A detailed explanation of the BrowserID protocol is available on MDN.

Persona

By default, django-browserid relies on Persona, which is a set of BrowserID-related services hosted by Mozilla. It’s
possible, but annoying, to use django-browserid without these dependencies.

Currently, django-browserid relies on Persona for:

• The Cross-browser API Library, which implements the navigator.id API for browsers that don’t natively
support BrowserID.

• The Fallback Identity Provider for emails from servers that don’t support BrowserID.

• The Remote verification service, which handles assertion verification for sites that don’t want to verify assertions
themselves.

In the future, django-browserid will remove the need to depend on these Mozilla-centric services. Local verification
and a self-hosted cross-browser API will greatly reduce the reliance on Mozilla’s servers for authentication.

1.1.2 Quickstart

Follow these instructions to get set up with a basic install of django-browserid:

Installation

You can use pip to install django-browserid and requirements:

$ pip install django-browserid

Configuration

After installation, you’ll need to configure your site to use django-browserid. Start by making the following changes
to your settings.py file:

Add 'django_browserid' to INSTALLED_APPS.
INSTALLED_APPS = (

...
'django.contrib.auth',
'django_browserid', # Load after auth
...

)

Add the django_browserid authentication backend.
AUTHENTICATION_BACKENDS = (

...
'django.contrib.auth.backends.ModelBackend',
'django_browserid.auth.BrowserIDBackend',
...

)

Next, edit your urls.py file and add the following:

4 Chapter 1. django-browserid

https://developer.mozilla.org/Persona/Protocol_Overview
https://developer.mozilla.org/Persona/Bootstrapping_Persona#Cross-browser_API_Library
https://developer.mozilla.org/Persona/Bootstrapping_Persona#Fallback_Identity_Provider
https://developer.mozilla.org/Persona/Remote_Verification_API

django-browserid Documentation, Release 2.0.2

urlpatterns = patterns('',
...
(r'', include('django_browserid.urls')),
...

)

Note: The django-browserid urlconf must not have a regex with the include. Use a blank string, as shown above.

Finally, you’ll need to add the login button and info tag to your Django templates, along with the CSS and JS files
necessary to make it work:

{% load browserid %}
<html>
<head>
{% browserid_css %}

</head>
<body>
{% browserid_info %}
{% if user.is_authenticated %}

<p>Current user: {{ user.email }}</p>
{% browserid_logout text='Logout' %}

{% else %}
{% browserid_login text='Login' color='dark' %}

{% endif %}

<script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
{% browserid_js %}

</body>
</html>

Note: api.js and browserid.js require jQuery 1.8 or higher.

Note: The browserid_info tag is required on any page that users can log in from. It’s recommended to put it
just below the <body> tag.

And that’s it! You can now log into your site using Persona!

Once you’re ready, you should check out how to customize django-browserid to your liking.

Note for Jinja2 / Jingo Users

If you’re using Jinja2 via jingo, here’s a version of the example above written in Jinja2:

<html>
<head>
{{ browserid_css() }}

</head>
<body>
{{ browserid_info() }}
{% if user.is_authenticated() %}
<p>Current user: {{ user.email }}</p>
{{ browserid_logout(text='Logout') }}

1.1. User Guide 5

http://jquery.com/
http://jinja.pocoo.org/
https://github.com/jbalogh/jingo

django-browserid Documentation, Release 2.0.2

{% else %}
{{ browserid_login(text='Login', color='dark') }}

{% endif %}

<script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
{{ browserid_js() }}

</body>
</html>

1.1.3 Customization

Now that you’ve got django-browserid installed and configured, it’s time to see how to customize it to your needs.

Local Assertion Verification

When a user authenticates via django-browserid, they do so by sending your site an assertion, which, when verified,
gives you an email address for the user. Normally, this verification is handled by sending the assertion to a verification
service hosted by Mozilla.

However, you can also verify assertions locally and avoid relying on the verification service. To do so, you
must install PyBrowserID. django-browserid checks for PyBrowserID, and if it is found, it enables the use of the
LocalVerifier class.

Once you’ve installed PyBrowserID, add the LocalBrowserIDBackend class to your
AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
'django_browserid.auth.LocalBrowserIDBackend',

)

Note: Because the BrowserID certificate format has not been finalized, PyBrowserID may fail to verify a valid
assertion if the format changes. Be aware of the risks before enabling local verification.

Customizing the Verify View

Many common customizations involve overriding methods on the Verify class. But how do you use a custom
Verify subclass?

You can substitute a custom verification view by setting BROWSERID_VERIFY_CLASS to the import path for your
view:

BROWSERID_VERIFY_CLASS = 'project.application.views.MyCustomVerifyClass'

Customizing the Authentication Backend

Another common way to customize django-browserid is to subclass BrowserIDBackend. To use
a custom BrowserIDBackend class, simply use the python path to your custom class in the
AUTHENTICATION_BACKENDS setting instead of the path to BrowserIDBackend.

6 Chapter 1. django-browserid

https://developer.mozilla.org/en-US/Persona/Remote_Verification_API
https://developer.mozilla.org/en-US/Persona/Remote_Verification_API
https://pypi.python.org/pypi/PyBrowserID/

django-browserid Documentation, Release 2.0.2

Post-login Response

After logging the user in, the default view redirects the user to LOGIN_REDIRECT_URL or
LOGIN_REDIRECT_URL_FAILURE, depending on if login succeeded or failed. You can modify those set-
tings to change where they are redirected to.

Note: You can use django.core.urlresolvers.reverse_lazy to generate a URL for these settings from
a URL pattern name or function name.

You can also override the success_url and failure_url properties on the Verify view if you need more
control over how the redirect URLs are retrieved.

If you need to control the entire response to the Verify view, such as when you’re using custom JavaScript, you’ll
want to override login_success and login_failure.

Automatic User Creation

If a user signs in with an email that doesn’t match an existing user, django-browserid automatically creates
a new User object for them that is tied to their email address. You can disable this behavior by setting
BROWSERID_CREATE_USER to False, which will cause authentication to fail if a user signs in with an unrecog-
nized email address.

If you want to customize how new users are created (perhaps you want to generate a display name for them), you can
override the create_user method on BrowserIDBackend:

from django_browserid.auth import BrowserIDBackend

class CustomBackend(BrowserIDBackend):
def create_user(self, email):

username = my_custom_username_algo()
return self.User.objects.create_user(username, email)

Note: self.User points to the User model defined in AUTH_USER_MODEL for custom User model support. See
Custom User Models for more details.

Limiting Authentication

There are two ways to limit who can authenticate with your site: prohibiting certain email addresses, or filtering the
queryset that emails are compared to.

filter_users_by_email

filter_users_by_email returns the queryset that is searched when looking for a user account that matches a
user’s email. Overriding this allows you to limit the set of users that are searched:

from django_browserid.auth import BrowserIDBackend

class CustomBackend(BrowserIDBackend):
def filter_users_by_email(self, email):

Only allow staff users to login.
return self.User.objects.filter(email=email, is_staff=True)

1.1. User Guide 7

django-browserid Documentation, Release 2.0.2

Note: If you customize filter_users_by_email, you should probably make sure that Automatic User Creation
is either disabled or customized to only create users that match your limited set.

is_valid_email

is_valid_email determines if the email a user attempts to log in with is considered valid. Override this to exclude
users with certain emails:

from django_browserid.auth import BrowserIDBackend

class CustomBackend(BrowserIDBackend):

def is_valid_email(self, email): # Ignore users from fakeemails.com return not
email.endswith(‘@fakeemails.com‘)

Custom User Models

Django allows you to use a custom User model for authentication. If you are using a custom User model, and the
model has an email attribute that can store email addresses, django-browserid should work out-of-the-box for you.

If this isn’t the case, then you will probably have to override the is_valid_email, filter_users_by_email,
and create_user methods to work with your custom User class.

Using the JavaScript API

django-browserid comes with two JavaScript files to include in your webpage:

1. api.js: An API for triggering logins via BrowserID and verifying assertions via the server.

2. browserid.js: A basic example of hooking up links with the JavaScript API.

browserid.js only covers basic use cases. If your site has more complex behavior behind trigger login, you should
replace browserid.js in your templates with your own JavaScript file that uses the django-browserid JavaScript
API.

See also:

JavaScript API API Documentation for api.js.

Django Admin Support

If you want to use BrowserID for login on the built-in Django admin interface, you must use the
django-browserid admin site instead of the default Django admin site:

from django.contrib import admin

from django_browserid.admin import site as browserid_admin

from myapp.foo.models import Bar

class BarAdmin(admin.ModelAdmin):
pass

browserid_admin.register(Bar, BarAdmin)

8 Chapter 1. django-browserid

mailto:'@fakeemails.com
https://docs.djangoproject.com/en/dev/topics/auth/customizing/#specifying-a-custom-user-model

django-browserid Documentation, Release 2.0.2

You must also use the django-browserid admin site in your urls.py file:

from django.conf.urls import patterns, include, url

Autodiscover admin.py files in your project.
from django.contrib import admin
admin.autodiscover()

copy_registry copies ModelAdmins registered with the default site, like
the built-in Django User model.
from django_browserid.admin import site as browserid_admin
browserid_admin.copy_registry(admin.site)

urlpatterns = patterns('',
...
url(r'^admin/', include(browserid_admin.urls)),

)

See also:

django_browserid.admin.BrowserIDAdminSite API documentation for BrowserIDAdminSite, includ-
ing how to customize the login page (such as including a normal login alongside BrowserID login).

Alternative Template Languages

By default, django-browserid supports use in Django templates as well as use in Jinja2 templates via the jingo library.
Template helpers are registered as helper functions with jingo, so you can use them directly in Jinja2 templates:

<div class="authentication">
{% if user.is_authenticated() %}
{{ browserid_logout(text='Logout') }}

{% else %}
{{ browserid_login(text='Login', color='dark') }}

{% endif %}
</div>
{{ browserid_js() }}

For other libraries or template languages, you will have to register the django-browserid helpers manually. The relevant
helper functions can be found in the django_browserid.helpers module.

1.1.4 Extras

django-browserid comes with a few extra pieces to make development easier. They’re documented below.

Offline Development

Because django-browsered relies on the Persona service, offline development is not supported by default. To work
around this, django-browserid includes an auto-login system that lets you specify an email to log the user in with when
they click a login button.

Warning: Auto-login is a huge security hole as it bypasses authentication. Only use it for local development on
your own computer; never use it on a publicly-visible machine or your live, production website.

1.1. User Guide 9

http://jinja.pocoo.org/
https://github.com/jbalogh/jingo

django-browserid Documentation, Release 2.0.2

Enable auto-login

To enable auto-login:

1. Add the AutoLoginBackend class to the AUTHENTICATION_BACKENDS setting.

2. Set BROWSERID_AUTOLOGIN_EMAIL to the email you want to be logged in as.

3. Set BROWSERID_AUTOLOGIN_ENABLED to True.

4. If you are not using browserid_js template helper, you have to manually add
browserid/autologin.js to your site.

For example:

AUTHENTICATION_BACKENDS = (
'django_browserid.auth.AutoLoginBackend',
'django_browserid.auth.BrowserIDBackend', # After auto-login.

)

BROWSERID_AUTOLOGIN_EMAIL = 'bob@example.com'
BROWSERID_AUTOLOGIN_ENABLED = True

Once these are set, any login button that uses the JavaScript API will not attempt to show the Persona popup, and will
immediately log you in with the email you set above.

Disable auto-login

To disable auto-login:

1. Set BROWSERID_AUTOLOGIN_ENABLED to False.

2. If you added browserid/autologin.js to your site, you must remove it.

1.1.5 Settings

This document describes the Django settings that can be used to customize the behavior of django-browserid.

Core Settings

django.conf.settings.BROWSERID_AUDIENCES

Default No default

List of audiences that your site accepts. An audience is the protocol, domain name, and (optionally) port that
users access your site from. This list is used to determine the audience a user is part of (how they are accessing
your site), which is used during verification to ensure that the assertion given to you by the user was intended
for your site.

Without this, other sites that the user has authenticated with via Persona could use their assertions to impersonate
the user on your site.

Note that this does not have to be a publicly accessible URL, so local URLs like http://localhost:8000
or http://127.0.0.1 are acceptable as long as they match what you are using to access your site.

10 Chapter 1. django-browserid

django-browserid Documentation, Release 2.0.2

Redirect URLs

Note: These settings also accepts view function names and named URL patterns which can be used to reduce
configuration duplication since you don’t have to define the URL in two places (settings and URLconf).

django.conf.settings.LOGIN_REDIRECT_URL

Default ’/accounts/profile’

Path to redirect to on successful login. If you don’t specify this, the default Django value will be used.

django.conf.settings.LOGIN_REDIRECT_URL_FAILURE

Default ’/’

Path to redirect to on an unsuccessful login attempt.

django.conf.settings.LOGOUT_REDIRECT_URL

Default ’/’

Path to redirect to on logout.

Customizing the Login Popup

django.conf.settings.BROWSERID_REQUEST_ARGS

Default {}

Controls the arguments passed to navigator.id.request, which are used to customize the login popup
box. To see a list of valid keys and what they do, check out the navigator.id.request documentation.

Customizing the Verify View

django.conf.settings.BROWSERID_VERIFY_CLASS

Default django_browserid.views.Verify

Allows you to substitute a custom class-based view for verifying assertions. For example, the string
‘myapp.users.views.Verify’ would import Verify from myapp.users.views and use it in place of the default view.

When using a custom view, it is generally a good idea to subclass the default Verify and override the methods
you want to change.

django.conf.settings.BROWSERID_CREATE_USER

Default True

If True or False, enables or disables automatic user creation during authentication. If set to a string, it is
treated as an import path pointing to a custom user creation function.

django.conf.settings.BROWSERID_DISABLE_SANITY_CHECKS

Default False

Controls whether the Verify view performs some helpful checks for common mistakes. Useful if you’re
getting warnings for things you know aren’t errors.

1.1. User Guide 11

https://developer.mozilla.org/en-US/docs/DOM/navigator.id.request

django-browserid Documentation, Release 2.0.2

Using a Different Identity Provider

django.conf.settings.BROWSERID_SHIM

Default ‘https://login.persona.org/include.js‘

The URL to use for the BrowserID JavaScript shim.

Extras

django.conf.settings.BROWSERID_AUTOLOGIN_ENABLED

Default False

If True, enables auto-login. You must also set the auto-login email and authentication backend for auto-login
to function. See the documentation on offline development for more info.

django.conf.settings.BROWSERID_AUTOLOGIN_EMAIL

Default Not set

The email to log users in as when auto-login is enabled. See the documentation on offline development for more
info.

1.1.6 Deploying in Production

Deploying django-browserid in a production environment requires a few extra changes from the setup described in the
Quickstart:

• The BROWSERID_AUDIENCES setting is required when DEBUG is set to False. Ensure that all the domains
that users will access your site from are listed in this setting.

• Optional: It is a good idea to minify the static JS and CSS files you’re using. django-compressor and jingo-
minify are examples of libraries you can use for minification.

1.1.7 Upgrading

If you’re looking to upgrade from an older version of django-browserid, you’re in the right place. This document
describes the major changes required to get your site up to the latest and greatest!

1.0.0 to 2.0.0

2.0.0 introduces a small, but backwards-incompatible change that shouldn’t affect most users. You are only affected if
you:

1. Use the browserid_login or browserid_logout template helpers to generate your login/logout but-
tons, and

2. Use custom JavaScript that relies on the data-next attribute on the buttons generate by these helpers.

If both of the above apply to you, then you may have to update your custom JavaScript, as the helpers now default
to a blank data-next value instead of defaulting to the LOGIN_REDIRECT_URL/LOGOUT_REDIRECT_URL
settings.

The default JavaScript does not rely on this, and it’s not expected that any project relies on this either. Most projects
should be able to upgrade to the new version with no changes.

12 Chapter 1. django-browserid

https://login.persona.org/include.js
http://django-compressor.readthedocs.org/en/latest/
https://github.com/jsocol/jingo-minify
https://github.com/jsocol/jingo-minify

django-browserid Documentation, Release 2.0.2

0.10.1 to 1.0.0

No changes are necessary to switch from 0.10.1 to 1.0.0. fancy_tag was removed as a dependency in 1.0.0, in case
you explicitly include it for your application.

0.9 to 0.10.1

• The minimum supported version of requests is now 1.0.0, and six has been removed from the requirements.

• Replace the SITE_URL setting with BROWSERID_AUDIENCES, which is essentially the same setting, but
must be a list of strings (wrapping your old SITE_URL value with square brackets to make it a list is fine):

BROWSERID_AUDIENCES = ['https://www.example.com']

– On local development installs, you can remove SITE_URL entirely, as BROWSERID_AUDIENCES isn’t
required when DEBUG is True.

• In your root urlconf, remove any regex in front of the include for django-browserid urls. Because the new
JavaScript relies on views being available at certain URLs, you must not change the path that the django-
browserid views are served:

urlpatterns = patterns('',
...
(r'', include('django_browserid.urls')),
...

)

• Remove django_browserid.context_processors.browserid from your
TEMPLATE_CONTEXT_PROCESSORS setting, as the context processor no longer exists.

• browserid.js has been split into api.js, which contains just the JavaScript API, and browserid.js,
which contains the sample code for hooking up login buttons. If you aren’t using the browserid_js helper
to include the JavaScript on the page, you probably need to update your project to either include both or just
api.js.

• The included JavaScript requires jQuery 1.8 or higher instead of jQuery 1.7.

0.8 to 0.9

• Six v1.3 or higher is now required.

0.7.1 to 0.8

• fancy_tag 0.2.0 has been added to the required libraries.

• Rename the browserid_form context processor to browserid in the
TEMPLATE_CONTEXT_PROCESSORS setting:

TEMPLATE_CONTEXT_PROCESSORS = (
...
'django_browserid.context_processors.browserid',
...

)

• Replace custom login button code with the new template helpers, browserid_info, browserid_login,
and browserid_logout.

1.1. User Guide 13

django-browserid Documentation, Release 2.0.2

– browserid_info should be added just below <body> on any page that includes a login button.

– browserid_login and browserid_logout output login and logout links respectively.

• It’s now recommended to include the JavaScript for the login buttons using the browserid_js helper, which
outputs the appropriate <script> tags.

• The included JavaScript requires jQuery 1.7 or higher instead of jQuery 1.6.

1.1.8 Troubleshooting

If you are having trouble getting django-browserid to work properly, try reading through the sections below for help
on dealing with common issues.

Logging Errors

Before you do anything else, check to see if django-browserid is logging issues by setting up a logger for
django_browserid in your logging config. Here’s a sample config that will log messages from django-browserid
to the console:

LOGGING = {
'version': 1,
'handlers': {

'console':{
'level': 'DEBUG',
'class': 'logging.StreamHandler'

},
},
'loggers': {

'django_browserid': {
'handlers': ['console'],
'level': 'DEBUG',

}
},

}

If you recently updated...

If you are hitting problems after updating django-browserid, check to make sure your installed copy matches the
tagged version on Github. In particular, leftover *.pyc files may cause unintended side effects. This is common
when installing without using a package manager like pip.

Nothing happens when clicking the login button

If nothing happens when you click the login button on your website, check that you’ve included api.js and
browserid.js on your webpage:

<script src="{% static 'browserid/api.js' %}"></script>
<script src="{% static 'browserid/browserid.js' %}"></script>

14 Chapter 1. django-browserid

django-browserid Documentation, Release 2.0.2

CSP WARN: Directive ”...” violated by https://browserid.org/include.js

You may see this warning in your browser’s error console when your site uses Content Security Policy without making
an exception for the persona.org external JavaScript include.

To fix this, include https://login.persona.org in your script-src and frame-src directive. If you’re using the django-csp
library, the following settings will work:

CSP_SCRIPT_SRC = ("'self'", 'https://login.persona.org')
CSP_FRAME_SRC = ("'self'", 'https://login.persona.org')

Login fails silently after the Persona popup closes

There are a few reasons why login may fail without an error message after the Persona popup closes:

SESSION_COOKIE_SECURE is False

SESSION_COOKIE_SECURE controls if the secure flag is set on the session cookie. If set to True for site running in
an environment that doesn’t use HTTPS, the session cookie won’t be sent by your browser because you’re using an
HTTP connection.

The solution is to set SESSION_COOKIE_SECURE to False on your local instance in your settings file:

SESSION_COOKIE_SECURE = False

No cache configured

Several projects (especially projects based on playdoh, which uses django-session-csrf) store session info in the cache
rather than the database, and if your local instance has no cache configured, the session information will not be stored
and login will fail silently.

To solve this issue, you should configure your local instance to use an in-memory cache with the following in your
local settings file:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake'

}
}

Login fails with an error message on a valid account

If you see a login error page after attempting to login, but you know that your Persona account is valid and should be
able to login, check for these issues:

Your website uses HTTPS but django-browserid thinks it’s using HTTP

If you are using django-browserid behind a load balancer that uses HTTP internally for your SSL connections, you
may experience failed logins. The request.is_secure() method determines if a request is using HTTPS by
checking for the header specified by the SECURE_PROXY_SSL_HEADER setting. If this is unset or the header is
missing, Django assumes the request uses HTTP.

1.1. User Guide 15

https://developer.mozilla.org/en/Security/CSP
https://login.persona.org
https://github.com/mozilla/django-csp
https://github.com/mozilla/playdoh
https://github.com/mozilla/django-session-csrf
https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header

django-browserid Documentation, Release 2.0.2

Because the audiences stored in BROWSERID_AUDIENCES include the protocol used to access the site, you may get
an error when django-browserid checks the audiences against the URL from the request due to the request thinking
it’s not using SSL when it is.

Make sure that SECURE_PROXY_SSL_HEADER is set to an appropriate value for your load balancer. An example
configuration using nginx might look like this:

settings.py
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTOCOL', 'https')

nginx config
location / {

proxy_pass http://127.0.0.1:8000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Protocol https; # Tell django we're using https

}

Still having issues? Ask for help!

If your issue isn’t listed above and you’re having trouble tracking it down, you can try asking for help from:

• The #webdev channel on irc.mozilla.org,

• The dev-webdev@lists.mozilla.org mailing list,

• or by emailing the maintainers directly.

1.2 API Documentation

1.2.1 Python API

This part of the documentation describes the interfaces for using django-browserid.

Template Helpers

Template helpers are the functions used in your templates that output HTML for login and logout buttons, as well as
the CSS and JS tags for making the buttons function and display correctly.

django_browserid.helpers.browserid_info()
Output the HTML for the info tag, which contains the arguments for navigator.id.request from the
BROWSERID_REQUEST_ARGS setting. Should be called once at the top of the page just below the <body>
tag.

django_browserid.helpers.browserid_login(text=’Sign in’, color=None, next=None,
link_class=’browserid-login persona-button’,
attrs=None, fallback_href=’#’)

Output the HTML for a BrowserID login link.

Parameters

• text – Text to use inside the link. Defaults to ‘Sign in’, which is not localized.

16 Chapter 1. django-browserid

http://wiki.nginx.org/
https://wiki.mozilla.org/IRC
https://lists.mozilla.org/listinfo/dev-webdev

django-browserid Documentation, Release 2.0.2

• color – Color to use for the login button; this will only work if you have included the
default CSS provided by django_browserid.helpers.browserid_css().

Supported colors are: ‘dark’, ‘blue’, and ‘orange’.

• next – URL to redirect users to after they login from this link. Defaults to
views.Verify.success_url.

• link_class – CSS class for the link. Defaults to browserid-login persona-button.

• attrs – Dictionary of attributes to add to the link. Values here override those set by other
arguments.

If given a string, it is parsed as JSON and is expected to be an object.

• fallback_href – Value to use for the href of the link. If the user has disabled JavaScript,
the login link will bring them to this page, which can be used as a non-JavaScript login
fallback.

django_browserid.helpers.browserid_logout(text=’Sign out’, next=None,
link_class=’browserid-logout’, attrs=None)

Output the HTML for a BrowserID logout link.

Parameters

• text – Text to use inside the link. Defaults to ‘Sign out’, which is not localized.

• next – URL to redirect users to after they logout from this link. Defaults to
views.Logout.redirect_url.

• link_class – CSS classes for the link. The classes will be appended to the default class
browserid-logout.

• attrs – Dictionary of attributes to add to the link. Values here override those set by other
arguments.

If given a string, it is parsed as JSON and is expected to be an object.

django_browserid.helpers.browserid_js(include_shim=True)
Return <script> tags for the JavaScript required by the BrowserID login button. Requires use of the staticfiles
app.

If the BROWSERID_AUTOLOGIN_ENABLED setting is True, an extra JavaScript file for mocking out Per-
sona will be included, and the shim won’t be included regardless of the value of the include_shim setting.

Parameters include_shim – A boolean that determines if the persona.org JavaScript shim is
included in the output. Useful if you want to minify the button JavaScript using a library like
django-compressor that can’t handle external JavaScript.

django_browserid.helpers.browserid_css()
Return <link> tag for the optional CSS included with django-browserid. Requires use of the staticfiles app.

Admin Site

Admin site integration allows you to support login via django-browserid on the Django built-in admin interface.

class django_browserid.admin.BrowserIDAdminSite(name=’admin’)
Support logging in to the admin interface via BrowserID.

include_password_form = False
If True, include the normal username and password form as well as the BrowserID button.

1.2. API Documentation 17

django-browserid Documentation, Release 2.0.2

copy_registry(site)
Copy the ModelAdmins that have been registered on another site so that they are available on this site as
well.

Useful when used with django.contrib.admin.autocomplete(), allowing you to copy the
ModelAdmin entries registered with the default site, such as the User ModelAdmin. For example, in
urls.py:

from django.contrib import admin
admin.autodiscover()

from django_browserid.admin import site as browserid_admin
browserid_admin.copy_registry(admin.site)

To include: url(r'^admin/', include(browserid_admin.urls))

Parameters site – Site to copy registry entries from.

django_browserid.admin.site
Global object for the common case. You can import this in admin.py and urls.py instead of
django.contrib.admin.site.

Authentication Backends

There are a few different authentication backends to choose from depending on how you want to authenticate users.

class django_browserid.auth.BrowserIDBackend

get_verifier()
Create a verifier for verifying assertions. Uses a django_browserid.base.RemoteVerifier by
default.

filter_users_by_email(email)
Return all users matching the specified email.

create_user(email)
Return object for a newly created user account.

is_valid_email(email)
Return True if the email address is ok to log in.

verify(assertion=None, audience=None, request=None, **kwargs)
Verify the given assertion and audience. See authenticate for accepted arguments.

authenticate(assertion=None, audience=None, request=None, **kwargs)
Authenticate a user by verifying a BrowserID assertion. Defers to the verifier returned by
BrowserIDBackend.get_verifier() for verification.

You may either pass the request parameter to determine the audience from the request, or pass the
audience parameter explicitly.

Parameters

• assertion – Assertion submitted by the user. This asserts that the user controls a spe-
cific email address.

• audience – The audience to use when verifying the assertion; this prevents another site
using an assertion for their site to login to yours. This value takes precedence over the
audience pulled from the request parameter, if given.

18 Chapter 1. django-browserid

django-browserid Documentation, Release 2.0.2

• request – The request that generated this authentication attempt. This
is used to determine the audience to use during verification, using the
django_browserid.base.get_audience() function. If the audience pa-
rameter is also passed, it will be used instead of the audience from the request.

• kwargs – All remaining keyword arguments are passed to the verify function on the
verifier.

class django_browserid.auth.LocalBrowserIDBackend
Bases: django_browserid.auth.BrowserIDBackend

BrowserID authentication backend that uses local verification instead of remote verification.

Views

django-browserid works primarily through AJAX requests to the views below in order to log users in and out and to
send information required for the login process, such as a CSRF token.

class django_browserid.views.Verify(**kwargs)
Bases: django_browserid.views.JSONView

Send an assertion to the remote verification service, and log the user in upon success.

failure_url
URL to redirect users to when login fails. This uses the value of
settings.LOGIN_REDIRECT_URL_FAILURE, and defaults to ’/’ if the setting doesn’t ex-
ist.

success_url
URL to redirect users to when login succeeds. This uses the value of
settings.LOGIN_REDIRECT_URL, and defaults to ’/’ if the setting doesn’t exist.

login_success()
Log the user into the site.

login_failure()
Redirect the user to a login-failed page. By default a 403 is returned.

post(*args, **kwargs)
Send the given assertion to the remote verification service and, depending on the result, trigger login
success or failure.

dispatch(request, *args, **kwargs)
Run some sanity checks on the request prior to dispatching it.

class django_browserid.views.Logout(**kwargs)
Bases: django_browserid.views.JSONView

redirect_url
URL to redirect users to post-login. Uses settings.LOGOUT_REDIRECT_URL and defaults to / if
the setting isn’t found.

post(request)
Log the user out.

class django_browserid.views.CsrfToken(**kwargs)
Bases: django_browserid.views.JSONView

Fetch a CSRF token for the frontend JavaScript.

1.2. API Documentation 19

django-browserid Documentation, Release 2.0.2

Signals

django_browserid.signals.user_created
Signal triggered when a user is automatically created during authentication.

Parameters

• sender – The function that created the user instance.

• user – The user instance that was created.

Exceptions

exception django_browserid.base.BrowserIDException(exc)
Raised when there is an issue verifying an assertion.

exc = None
Original exception that caused this to be raised.

Verification

The verification classes allow you to verify if a user-provided assertion is valid according to the Identity Provider
specified by the user’s email address. Generally you don’t have to use these directly, but they are available for sites
with complex authentication needs.

class django_browserid.RemoteVerifier
Verifies BrowserID assertions using a remote verification service.

By default, this uses the Mozilla Persona service for remote verification.

verify(assertion, audience, **kwargs)
Verify an assertion using a remote verification service.

Parameters

• assertion – BrowserID assertion to verify.

• audience – The protocol, hostname and port of your website. Used to confirm that the
assertion was meant for your site and not for another site.

• kwargs – Extra keyword arguments are passed on to requests.post to allow customiza-
tion.

Returns VerificationResult

Raises BrowserIDException: Error connecting to the remote verification service, or error
parsing the response received from the service.

class django_browserid.LocalVerifier(*args, **kwargs)
Verifies BrowserID assertions locally instead of using the remote verification service.

verify(assertion, audience, **kwargs)
Verify an assertion locally.

Parameters

• assertion – BrowserID assertion to verify.

• audience – The protocol, hostname and port of your website. Used to confirm that the
assertion was meant for your site and not for another site.

Returns VerificationResult

20 Chapter 1. django-browserid

django-browserid Documentation, Release 2.0.2

class django_browserid.MockVerifier(email, **kwargs)
Mock-verifies BrowserID assertions.

__init__(email, **kwargs)

Parameters

• email – Email address to include in successful verification result. If None, verify will
return a failure result.

• kwargs – Extra keyword arguments are used to update successful verification results.
This allows for mocking attributes on the result, such as the issuer.

verify(assertion, audience, **kwargs)
Mock-verify an assertion. The return value is determined by the parameters given to the constructor.

class django_browserid.VerificationResult(response)
Result of an attempt to verify an assertion.

VerificationResult objects can be treated as booleans to test if the verification succeeded or not.

The fields returned by the remote verification service, such as email or issuer, are available as attributes if
they were included in the response. For example, a failure result will raise an AttributeError if you try to access
the email attribute.

expires
The expiration date of the assertion as a naive datetime.datetime in UTC.

django_browserid.get_audience(request)
Determine the audience to use for verification from the given request.

Relies on the BROWSERID_AUDIENCES setting, which is an explicit list of acceptable audiences for your
site.

Returns The first audience in BROWSERID_AUDIENCES that has the same origin as the request’s
URL.

Raises django.core.exceptions.ImproperlyConfigured: If
BROWSERID_AUDIENCES isn’t defined, or if no matching audience could be found.

1.2.2 JavaScript API

Normally, you simply include browserid/api.js and browserid/browserid.js on a page, and buttons
generated by the template helpers will just work. If, however, you want more control, you can use the JavaScript API,
defined in api.js directly.

For example, if you wanted to trigger login and show a message when there is an error:

$('.loginButton').click(function() {
django_browserid.login().then(function(verifyResult) {

window.location = verifyResult.redirect;
}, function(jqXHR) {

window.alert('There was an error logging in, please try again.');
});

});

Note: See also browserid/browserid.js for an example of using the API.

This part of the documentation describes the JavaScript API defined in api.js.

1.2. API Documentation 21

django-browserid Documentation, Release 2.0.2

django_browserid
Global object containing the JavaScript API for interacting with django-browserid.

Most functions return jQuery Deferreds for registering asynchronous callbacks.

login([requestArgs])
Retrieve an assertion and use it to log the user into your site.

Arguments

• requestArgs (object) – Options to pass to navigator.id.request.

Returns Deferred that resolves once the user has been logged in.

logout()
Log the user out of your site.

Returns Deferred that resolves once the user has been logged out.

getAssertion([requestArgs])
Retrieve an assertion via BrowserID.

Returns Deferred that resolves with the assertion once it is retrieved.

verifyAssertion(assertion)
Verify that the given assertion is valid, and log the user in.

Arguments

• assertion (string) – Assertion to verify.

Returns Deferred that resolves with the login view response once login is complete.

getInfo()
Fetch information from the browserid_info tag, such as the parameters for the Persona popup.

Returns Object containing the data from the info tag.

getCsrfToken()
Fetch a CSRF token from the CsrfToken view via an AJAX request.

Returns Deferred that resolves with the CSRF token.

registerWatchHandlers([onReady])
Register callbacks with navigator.id.watch that make the API work. This must be called before calling any
other API methods.

Arguments

• onReady (function) – Callback that will be executed after the user agent is ready to
process login requests. This is passed as the onready argument to navigator.id.watch

1.3 Contributor Guide

1.3.1 Contributor Setup

So you want to contribute to django-browserid? Great! We really appreciate any help you can give!

The documentation below should help you set up a development environment and run the tests to ensure that your
changes work properly.

22 Chapter 1. django-browserid

https://api.jquery.com/jQuery.Deferred/
https://developer.mozilla.org/en-US/docs/DOM/navigator.id.request
https://developer.mozilla.org/docs/Web/API/navigator.id.watch

django-browserid Documentation, Release 2.0.2

Get the code

You can check out the code from the github repository:

git clone git://github.com/mozilla/django-browserid.git
cd django-browserid

It is a good idea to create a virtualenv (the example here uses virtualenvwrapper) for isolating your development
environment. To create a virtualenv and install all development packages:

mkvirtualenv django-browserid
pip install -r requirements.txt

Running tests

To check if your changes break any existing functionality, you can run the test suite:

./setup.py test

Before submitting a pull request, you should run the test suite in all the Django/Python combinations that we support.
We support running the tests in all these combinations via tox:

pip install tox
tox

Documenation

If you make changes to the documentation, you can build it locally with this command:

make -C docs/ html

The generated files can be found in docs/_build/html.

JavaScript Tests

To run the JavaScript tests, you must have node.js installed. Then, use the npm command to install the test dependen-
cies:

npm install

After that, you can run the JavaScript tests with the following command from the repo root:

npm test

1.3.2 Contributing Guidelines

In order to make our review/development process easier, we have some guidelines to help you figure out how to
contribute to django-browserid.

Reporting Issues

We use Github Issues to track issues and bugs for django-browserid.

1.3. Contributor Guide 23

https://github.com/mozilla/django-browserid
http://www.virtualenv.org/
http://virtualenvwrapper.readthedocs.org/
http://tox.readthedocs.org/en/latest/
https://nodejs.org/
https://github.com/mozilla/django-browserid/issues

django-browserid Documentation, Release 2.0.2

Development Guidelines

• Python code should be covered by unit tests. JavaScript code for the JavaScript API should be covered by unit
tests. We don’t yet have tests for non-API JavaScript code, so manual testing is recommended currently.

• Python code should follow Mozilla’s general Webdev guidelines. The same goes for our JavaScript guidelines
and CSS guidelines.

– As allowed by PEP8, we use 99-characters-per-line for Python code and 72-characters-per-line for docu-
mentation/comments. Feel free to break these guidelines for readability if necessary.

Submitting a Pull Request

When submitting a pull request, make sure to do the following:

• Check that the Python and JavaScript tests pass in all environments. Running the Python tests in all environments
is easy using tox:

$ pip install tox
$ tox

Running the JavaScript tests requires node.js. To install the test dependencies and run the test suite:

$ npm install
$ npm test

• Make sure to include new tests or update existing tests to cover your changes.

• If you haven’t, add your name, username, or alias to the AUTHORS.rst file as a contributor.

Additional Resources

• IRC: #webdev on irc.mozilla.org.

• Mailing list: dev-webdev@lists.mozilla.org.

1.3.3 Changelog

History

2.0.2 (2016-06-22)

• #299: Add support for named URLs in redirection settings (thanks abompard!).

• Removed support for Python 3 versions lower than 3.4 and for Django versions lower than 1.8.

2.0.1 (2016-03-02)

• Version number bump to upload a new package to PyPI. The previously-built wheel included some outdated
files that we want to get rid of.

24 Chapter 1. django-browserid

http://mozweb.readthedocs.org/en/latest/reference/python-style.html
http://mozweb.readthedocs.org/en/latest/reference/js-style.html
http://mozweb.readthedocs.org/en/latest/reference/css-style.html
http://tox.readthedocs.org/en/latest/
https://nodejs.org/
https://wiki.mozilla.org/IRC
https://lists.mozilla.org/listinfo/dev-webdev

django-browserid Documentation, Release 2.0.2

2.0.0 (2015-12-21)

• Backwards Incompatible Change: Fix behavior of browserid_login and browserid_logout helpers
to properly use a blank next value by default. This fixes a bug where projects usings the helpers would not use
the Verify.success_url/Logout.redirect_url properties on the login/logout views.

This may break custom JavaScript that relies on the data-next value on login and logout links generated by
these helpers. Affected JavaScript should instead check the response returned when making login and logout
requests to find the URL to redirect users to.

1.0.2 (2015-12-03)

• Test against the release version of Django 1.9.

• Fix Django 1.10 deprecation warnings.

1.0.1 (2015-11-02)

• Add preliminary support for Django 1.9 and Python 3.5.

• Distribute as a universal wheel.

1.0.0 (2015-04-30)

• Drop support for Django 1.4 to 1.6 and add 1.8 support. We now support Django 1.7 and 1.8 across Python 2.7,
3.2, 3.3, and 3.4.

• Removed fancy_tag dependency.

0.11.1 (2015-01-27)

• Fix circular import bug with jingo that was blocking people from upgrading who were using jingo.

0.11 (2014-09-25)

• Add support for local assertion verification instead of relying on the remote verification service if PyBrowserID
is installed.

• Add an auto-login backend to support offline local development when the Persona service isn’t available.

• Run automated tests for Django 1.7.

• Use the stateless Persona API, removing the need to work around issues involving Persona attempting to auto-
login or auto-logout users.

• Add support for setting an on_ready handler to be executed when the Persona API is ready to fetch assertions.

• Fix broken Django admin integration.

• Fix some issues around CSRF tokens used during the login process.

• Improve logging when using the default verify view so that it doesn’t look like an error.

• Various documentation updates.

1.3. Contributor Guide 25

django-browserid Documentation, Release 2.0.2

0.10.1 (2014-05-02)

• Add browserid_info helper back in. The previous method of fetching the Persona popup customization
via AJAX caused browsers to trigger popup warnings when users attempted to log in, so we switched back to
the old method of adding the info tag to pages.

0.10 (2014-04-15)

• Massive documentation update, including upgrade instructions for older versions.

• Support and test on Python 3.2 and 3.3, and Django 1.6!

• Disable automatic login and logout coming from Persona. This also fixes logins being triggered in all open tabs
on your site.

• Replace in-page form for trigger logins with AJAX calls. Removes need for {% browserid_info %} template
tag.

• Drop six from requirements.

• Replace SITE_URL setting with BROWSERID_AUDIENCES and make it optional when DEBUG is True.

• Add support for logging-in to the admin interface with Persona.

• Remove need to set custom context processor.

• Replace verify function with the Verifier classes like RemoteVerifier.

• And more!

0.9 (2013-08-25)

• Add BROWSERID_VERIFY_CLASS to make it easier to customize the verification view.

• Add hook to authentication backend for validating the user’s email.

• Ensure backend attribute exists on user objects authenticated by django-browserid.

• Prevent installation of the library as an unpackaged egg.

• Add incomplete Python 3 support.

• Fix an issue where users who logged in without Persona were being submitted to navigator.id.watch
anyway.

• Add CSS to make the login/logout buttons prettier.

• Support for SITE_URL being an iterable.

• Add support for lazily-evaluated BROWSERID_REQUEST_ARGS.

• Add a small JavaScript API available on pages that include browserid.js.

• Support running tests via python setup.py test.

• Fix an infinite loop where logging in with a valid Persona account while BROWSERID_CREATE_USER is true
would cause an infinite redirection.

26 Chapter 1. django-browserid

django-browserid Documentation, Release 2.0.2

0.8 (2013-03-05)

• #97: Add BrowserIDException that is raised by verify when there are issues connecting to the remote verifica-
tion service. Update the Verify view to handle these errors.

• #125: Prevent the Verify view from running reverse on user input and add check to not redirect to URLs with a
different host.

• Remove ability to set a custom name for the Verify redirect parameter: it’s just next.

• Replace browserid_button with browserid_login and browserid_logout, and make
browserid_info a function.

• #109: Fix issue with unicode strings in the extra_params kwarg for verify.

• #110: Fix bug where kwargs to authenticate get passed as extra_params to verify. Instead, you can
pass any extra parameters in browserid_extra. But please don’t, it’s undocumented for a reason. <3

• #105: General documentation fixes, add more debug logging for common issues. Add
BROWSERID_DISABLE_SANITY_CHECKS setting and remove the need to set SITE_URL in develop-
ment.

• Add form_extras parameter to browserid_button.

• #101, #102: Update the default JavaScript to pass the current user’s email address into
navigator.id.watch to avoid unnecessary auto-login attempts.

• Add template functions/tags to use for embedding login/logout buttons instead of using your own custom
HTML.

• Add a url kwarg to verify that lets you specify a custom verification service to use.

• Add documentation for setting up the library for development.

• #103: BrowserIDForm now fails validation if the assertion given is non-ASCII.

• Fix an error in the sample urlconf in the documentation.

• #98: Fix a bug where login or logout buttons might not be detected by the default JavaScript correctly if <a>
element contained extra HTML.

• Add pass_mock kwarg to mock_browserid, which adds a new argument to the front of the decorated
method that is filled with the Mock object used in place of _verify_http_request.

• Any extra kwargs to BrowserIDBackend.authenticate are passed in the verify request as POST argu-
ments (this will soon be removed, don’t rely on it).

0.7.1 (2012-11-08)

• Add support for a working logout button. Switching to the Observer API in 0.7 made the issue that we weren’t
calling navigator.id.logout more pronounced, so it makes sense to make a small new release to make
it easier to add a logout button.

0.7 (2012-11-07)

• Actually start updating the Changelog again.

• Remove deprecated functions django_browserid.auth.get_audience and
django_browserid.auth.BrowserIDBackend.verify, as well as support for DOMAIN and
PROTOCOL settings.

1.3. Contributor Guide 27

django-browserid Documentation, Release 2.0.2

• Add small fix for infinite login loops.

• Add automated testing for Django 1.3.4, 1.4.2, and 1.5a1.

• Switch to using format for all string formatting (breaks Python 2.5 compatibility).

• Add support for Django 1.5 Custom User Models.

• Fix request timeouts so that they work properly.

• Add ability to customize BrowserID login popup via arguments to navigator.id.request.

• Update JavaScript to use the new Observer API.

• Change browserid.org urls to login.persona.org.

1.3.4 Authors

django-browserid is written and maintained by various contributors:

Current Maintainers

• Michael Kelly <mkelly@mozilla.com>

• Will Kahn-Greene <willkg@mozilla.com>

• Peter Bengtsson <peterbe@mozilla.com>

Previous Maintainers

• Paul Osman

• Austin King

• Ben Adida

Patches and Suggestions

• Thomas Grainger

• Owen Coutts

• Francois Marier

• Andy McKay

• Giorgos Logiotatidis

• Alexis Metaireau

• Rob Hudson

• Ross Bruniges

• Les Orchard

• Charlie DeTar

• Luke Crouch

• shaib

28 Chapter 1. django-browserid

mailto:mkelly@mozilla.com
mailto:willkg@mozilla.com
mailto:peterbe@mozilla.com

django-browserid Documentation, Release 2.0.2

• Kumar McMillan

• Carl Meyer

• ptgolden

• Will Kahn-Greene

• Allen Short

• meehow

• Greg Koberger

• Niran Babalola

• callmekatootie

• Paul Mclanahan

• JR Conlin

• Prasoon Shukla

• Peter Bengtsson

• Javed Khan

• Kalail (Kashif Malik)

• Richard Mansfield

• Francesco Pischedda

• Edward Abraham

• Eric Holscher

• mvasilkov

• Mounir Messelmeni

• Tomo Krajina

• Sergio Oliveira

• pythonik

• Aurélien Bompard

• Ed Morley

• Alan Briolat

1.3. Contributor Guide 29

django-browserid Documentation, Release 2.0.2

30 Chapter 1. django-browserid

Python Module Index

d
django_browserid, 16
django_browserid.admin, 17
django_browserid.auth, 18
django_browserid.helpers, 16
django_browserid.signals, 20
django_browserid.views, 19

31

django-browserid Documentation, Release 2.0.2

32 Python Module Index

Index

Symbols
__init__() (django_browserid.MockVerifier method), 21

A
authenticate() (django_browserid.auth.BrowserIDBackend

method), 18

B
BROWSERID_AUDIENCES (in module

django.conf.settings), 10
BROWSERID_AUTOLOGIN_EMAIL (in module

django.conf.settings), 12
BROWSERID_AUTOLOGIN_ENABLED (in module

django.conf.settings), 12
BROWSERID_CREATE_USER (in module

django.conf.settings), 11
browserid_css() (in module django_browserid.helpers),

17
BROWSERID_DISABLE_SANITY_CHECKS (in mod-

ule django.conf.settings), 11
browserid_info() (in module django_browserid.helpers),

16
browserid_js() (in module django_browserid.helpers), 17
browserid_login() (in module django_browserid.helpers),

16
browserid_logout() (in module

django_browserid.helpers), 17
BROWSERID_REQUEST_ARGS (in module

django.conf.settings), 11
BROWSERID_SHIM (in module django.conf.settings),

12
BROWSERID_VERIFY_CLASS (in module

django.conf.settings), 11
BrowserIDAdminSite (class in django_browserid.admin),

17
BrowserIDBackend (class in django_browserid.auth), 18
BrowserIDException, 20

C
copy_registry() (django_browserid.admin.BrowserIDAdminSite

method), 17
create_user() (django_browserid.auth.BrowserIDBackend

method), 18
CsrfToken (class in django_browserid.views), 19

D
dispatch() (django_browserid.views.Verify method), 19
django_browserid (global variable or constant), 21
django_browserid (module), 16
django_browserid.admin (module), 17
django_browserid.auth (module), 18
django_browserid.helpers (module), 16
django_browserid.signals (module), 20
django_browserid.views (module), 19

E
exc (django_browserid.base.BrowserIDException at-

tribute), 20
expires (django_browserid.VerificationResult attribute),

21

F
failure_url (django_browserid.views.Verify attribute), 19
filter_users_by_email() (django_browserid.auth.BrowserIDBackend

method), 18

G
get_audience() (in module django_browserid), 21
get_verifier() (django_browserid.auth.BrowserIDBackend

method), 18
getAssertion() (built-in function), 22
getCsrfToken() (built-in function), 22
getInfo() (built-in function), 22

I
include_password_form (django_browserid.admin.BrowserIDAdminSite

attribute), 17

33

django-browserid Documentation, Release 2.0.2

is_valid_email() (django_browserid.auth.BrowserIDBackend
method), 18

L
LocalBrowserIDBackend (class in

django_browserid.auth), 19
LocalVerifier (class in django_browserid), 20
login() (built-in function), 22
login_failure() (django_browserid.views.Verify method),

19
LOGIN_REDIRECT_URL (in module

django.conf.settings), 11
LOGIN_REDIRECT_URL_FAILURE (in module

django.conf.settings), 11
login_success() (django_browserid.views.Verify

method), 19
Logout (class in django_browserid.views), 19
logout() (built-in function), 22
LOGOUT_REDIRECT_URL (in module

django.conf.settings), 11

M
MockVerifier (class in django_browserid), 20

P
post() (django_browserid.views.Logout method), 19
post() (django_browserid.views.Verify method), 19

R
redirect_url (django_browserid.views.Logout attribute),

19
registerWatchHandlers() (built-in function), 22
RemoteVerifier (class in django_browserid), 20

S
site (in module django_browserid.admin), 18
success_url (django_browserid.views.Verify attribute), 19

U
user_created (in module django_browserid.signals), 20

V
VerificationResult (class in django_browserid), 21
Verify (class in django_browserid.views), 19
verify() (django_browserid.auth.BrowserIDBackend

method), 18
verify() (django_browserid.LocalVerifier method), 20
verify() (django_browserid.MockVerifier method), 21
verify() (django_browserid.RemoteVerifier method), 20
verifyAssertion() (built-in function), 22

34 Index

	django-browserid
	User Guide
	API Documentation
	Contributor Guide

	Python Module Index

